close

Scanning electron micrograph of E. coli bacteria. A rapidly growing colony can be programmed to act as a hugely powerful parallel computer. Photograph: Getty




A directed graph containing a unique Hamiltonian path. The seven nodes are connected with fourteen directed edges. The Hamiltonian Path Problem is to start at node 1, end at node 5, and visit each node exactly once while following the available edges. Adleman programmed a DNA computer to find the unique Hamiltonian path in this graph (1→4→7→2→3→6→5).


Detecting solutions to a Hamiltonian Path Problem with bacterial computing. Bacterial colonies containing each of the three starting constructs ABC, ACB, and BAC are shown on the left. Hin recombination resulted in the three plates of colonies on the right. The callouts include yellow colored colonies that contain solutions to the HPP.

Clones isolated from HPP recombination plates. Selected colonies from ABC, ACB, and BAC recombination plates were grown overnight and replated. The results emphasize the diversity of colors produced by the bacterial computer in the HPP experiment.


利用大腸桿菌(E. coli)製成細菌電腦
運算速度遠高於以矽為基礎的電腦

改寫自科學網
就在科技界還在無休止地爭論上網本與筆記本電腦的優劣之際,合成生物學家已將傳統電腦遠遠拋在了身後。一個美國科學家團隊利用經巧妙設計的大腸桿菌(E. coli),製成了可解決複雜數學問題的細菌電腦,且速度遠快於任何以矽為基礎的電腦。此項發表在《生物工程the Journal of Biological Engineering》雜誌上的研究證明,細菌也可用於解決如“漢彌爾頓路徑問題(Hamiltonian path problem)”這樣的複雜數學難題。
 
漢彌爾頓路徑問題是指,譬如想遊遍台灣10個城市,從台北出發,以恆春為目的地,不重複走遍所有 10個城市的最短路線。這個看似簡單的問題要解決起來其實超乎想像的複雜。因為從台北到恆春的所有可能路線組合高達350萬條,普通電腦要找出其中最短的路線需要花很長的時間,因為它一次只能嘗試一條。而一台由數百萬細菌組成的電腦則能同時考慮每一條路徑。隨著時間的推移,細菌的繁殖不斷增加,其計算能力還能繼續提高。
 
然而,對這種細菌電腦進行編程可不是一件容易的事。研究人員通過改變大腸埃希菌的 DNA,將該數學問題簡化為只有3個城市的版本並加以編碼。這些城市由一系列會令細菌發出紅光或綠光的基因組合代表,而城市間可能的途徑由DNA的隨機排序進行搜尋。產生正確答案的細菌會同時發出兩種顏色的光,從而將之變成黃色。
 
科學家們通過檢查DNA序列來校對黃色細菌所給出的答案。通過使用一些額外的基因差異——比如對特定抗生素的抗性,該研究小組認為,他們的方法可擴展為解決包含更多城市的問題。
 
當然,這還不是細菌電腦能夠解決的唯一問題。此項研究建立在該研究小組以往的研究成果之上,研究人員在去年曾研製了一個用以解決“翻煎餅問題(Burnt Pancake Problem)”的細菌電腦。“翻煎餅問題”簡單說就是要把一疊不同大小、半面焦且金黃焦面向下的煎餅,利用一隻翻鏟,將每一焦面全部向上,同時將最大片的置於底部,最後計算出此一問題的可能解答數。
 
此項研究除了證明細菌計算的能力之外,還為合成生物學領域做出了重要貢獻。電子電路由電晶體、二極體及其他元件組成,生物電路也是如此。目前,合成生物學家們已共同創建了《標準生物零件登記簿Registry of Standard Biological Parts》,而此項最新研究的成果又為這個登記簿增添了 60多個新零件。(來源:科技日報 馮衛東)

英國guardian.co.uk原文報導
Bacteria make computers look like pocket calculators

Journal of Biological Engineering原文論文
Solving a Hamiltonian Path Problem with a bacterial computer
Journal of Biological Engineering 2009, 3:11doi:10.1186/1754-1611-3-11
Jordan Baumgardner1, Karen Acker2, Oyinade Adefuye2,3, Samuel Thomas Crowley1, Will DeLoache2, James O Dickson4, Lane Heard1, Andrew T Martens2, Nickolaus Morton1, Michelle Ritter5, Amber Shoecraft4,6, Jessica Treece1, Matthew Unzicker1, Amanda Valencia1, Mike Waters2, A Malcolm Campbell2, Laurie J Heyer4, Jeffrey L Poet5 and Todd T Eckdahl1
1Department of Biology, Missouri Western State University, St Joseph, MO 64507, USA
2Department of Biology, Davidson College, Davidson, NC 28036, USA
3Department of Biology, North Carolina Central University, Durham, NC 27707, USA
4Department of Mathematics, Davidson College, Davidson, NC 28036, USA
5Department of Computer Science, Math and Physics, Missouri Western State University, St Joseph, MO 64507, USA
6Natural Science and Math Department, Johnson C. Smith University, Charlotte, NC 28216, USA

翻煎餅問題的細菌電腦原文論文
Engineering bacteria to solve the Burnt Pancake Problem
Journal of Biological Engineering 2008, 2:8doi:10.1186/1754-1611-2-8



arrow
arrow
    全站熱搜
    創作者介紹
    創作者 chendaneyl 的頭像
    chendaneyl

    冒牌自然老師

    chendaneyl 發表在 痞客邦 留言(0) 人氣()